skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nian, Qiong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Abstract Improving the electrical performance of copper, the most widely used electrical conductor in the world is of vital importance to the progress of key technologies, including electric vehicles, portable devices, renewable energy, and power grids. Copper‐graphene composite (CGC) stands out as the most promising candidate for high‐performance electrical conductor applications. This can be attributed to the superior properties of graphene fillers embedded in CGC, including excellent electrical and thermal conductivity, corrosion resistance, and high mechanical strength. This review highlights the recent progress of CGC conductors, including their fabrication processes, electrical performances, mechanisms of copper‐graphene interplay, and potential applications. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Abstract Fused deposition modeling 3D printing provides a cost-effective and streamlined method for producing electrochemical sensors, overcoming the challenges associated with material selection, complex fabrication processes, and reproducibility issues. This study introduces an innovative approach utilizing a dual-printer setup to simplify the manufacturing of sensor electrodes. A critical enhancement in this process is the surface modification with reduced graphene oxide (rGO), which not only improves the electrochemical characteristics but also induces a wrinkled structure on the 3D printed surface. These wrinkles significantly increase the surface area, directly boosting the electrode’s electrochemical performance. Comprehensive characterization of the electrode surfaces, both before and after rGO modification, demonstrates a substantial increase in sensitivity, with a fortyfold improvement observed in hydrogen peroxide (H2O2) amperometric measurements. This breakthrough paves the way for advanced applications in 3D printed electrochemical sensors. 
    more » « less
  4. Abstract Polycrystalline yttrium aluminum garnet (YAG) ceramic doped with neodymium (Nd), referred to as Nd:YAG, is widely used in solid‐state lasers. However, conventional powder metallurgy methods suffer from expenses, time consumption, and limitations in customizing structures. This study introduces a novel approach for creating Nd:YAG ceramics with 3D free‐form structures from micron (∼70 µm) to centimeter scales. Firstly, sol‐gel synthesis is employed to form photocurable colloidal solutions. Subsequently, by utilizing a home‐built micro‐continuous liquid interface printing process, precursors are printed into 3D poly(acrylic acid) hydrogels containing yttrium, aluminum, and neodymium hydroxides, with a resolution of 5.8 µmpixel−1at a speed of 10 µm s−1. After the hydrogels undergo thermal dehydration, debinding, and sintering, polycrystalline Nd:YAG ceramics featuring distinguishable grains are successfully produced. By optimizing the concentrations of the sintering aids (tetraethyl orthosilicate) and neodymium trichloride (NdCl3), the resultant samples exhibit satisfactory photoluminescence, emitting light concentrated at 1064 nm when stimulated by a 532 nm laser. Additionally, Nd:YAG ceramics with various 3D geometries (e.g., cone, spiral, and angled pillar) are printed and characterized, which demonstrates the potential for applications, such as laser and amplifier fibers, couplers, and splitters in optical circuits, as well as gain metamaterials or metasurfaces. 
    more » « less
  5. Abstract Graphene-based electrodes have been extensively investigated for supercapacitor applications. However, their ion diffusion efficiency is often hindered by the graphene restacking phenomenon. Even though holey graphene is fabricated to address this issue by providing ion transport channels, those channels could still be blocked by densely stacked graphene nanosheets. To tackle this challenge, this research aims at improving the ion diffusion efficiency of microwave-synthesized holey graphene films by tuning the water interlayer spacer towards the improved supercapacitor performance. By controlling the vacuum filtration during graphene-based electrode fabrication, we obtain dry films with dense packing and wet films with sparse packing. The SEM images reveal that 20 times larger interlayer distance is constructed in the wet film compared to that in the dry counterpart. The holey graphene wet film delivers a specific capacitance of 239 F/g, ~82% enhancement over the dry film (131 F/g). By an integrated experimental and computational study, we quantitatively show that the interlayer spacing in combination with the nanoholes in the basal plane dominates the ion diffusion rate in holey graphene-based electrodes. Our study concludes that novel hierarchical structures should be further considered even in holey graphene thin films to fully exploit the superior advantages of graphene-based supercapacitors. 
    more » « less